Đề thi trắc nghiệm học kì I môn Toán Lớp 12 - Mã đề 01

Đề thi trắc nghiệm học kì I môn Toán Lớp 12 - Mã đề 01

Câu 1. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

 A. B. C. D.

Câu 2. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

 A. B. C. D.

Câu 3. Cho hàm số xác định, liên tục trên  và có bảng biến thiên :

Khẳng định nào sau đây là khẳng định đúng ?

 A. Hàm số có đúng hai cực trị. B. Hàm số có giá trị nhỏ nhất bằng .

C. Hàm số có giá trị cực tiểu bằng 0. D. Hàm số không xác định tại .

Câu 4. Cho hàm số có và . Chọn mệnh đề đúng ?

 A. Đồ thị hàm số đã cho không có tiệm cận đứng.B. Đồ thị hàm số đã cho có đúng một tiệm cận đứng.

 C. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng y  1 và y  1.

 D. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng x  1 và x  1.

 

doc 4 trang phuongtran 4060
Bạn đang xem tài liệu "Đề thi trắc nghiệm học kì I môn Toán Lớp 12 - Mã đề 01", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Đề 1
Câu 1. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
 A. B. 	C. D. 
Câu 2. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
 A. B. 	C. D. 
Câu 3. Cho hàm số xác định, liên tục trên R và có bảng biến thiên :
X
-∞ 0 +∞
y’
 - || + 0 +
Y
 + ∞ 
Khẳng định nào sau đây là khẳng định đúng ?
 	A. Hàm số có đúng hai cực trị.	B. Hàm số có giá trị nhỏ nhất bằng .
C. Hàm số có giá trị cực tiểu bằng 0.	D. Hàm số không xác định tại .
Câu 4. Cho hàm số có và . Chọn mệnh đề đúng ?
 A. Đồ thị hàm số đã cho không có tiệm cận đứng.B. Đồ thị hàm số đã cho có đúng một tiệm cận đứng.
 C. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng y = 1 và y = -1.
 D. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng x = 1 và x = -1.
5. Tìm giá trị cực đại của hàm số. A. . B. .C. .D. .
6. Tìm khoảng đồng biến của hàm số .A. . B. .C. .D. .
Câu 7. Đường thẳng cắt đồ thị hàm số tại điểm có tọa độ . Tìm ?
 A. .	 	B. .	 	C. .	D. .
Câu 8. Tìm giá trị nhỏ nhất của hàm số trên đoạn .
 A. 	B. 	C. 	D. 
Câu 9. Tìm giá trị nhỏ nhất của hàm số trên đoạn .
 A. 	B. 	C. 	D. 
Câu 10. Tìm giá trị lớn nhất của hàm số trên đoạn .
 A. 	B. 	C. D. 
Câu 11. Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên tập xác định của nó.A. 	B. 	C. 	D. 
Câu 12. Tìm tất cả các giá trị của tham số m để hàm số có đúng một cực trị.
 A. 	B. 	C. 	D. 
Câu 13. Tìm m để hàm số có ba cực trị.A. .B. .C. .	D. .
Câu 14. Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên tập xác định của nó.A. 	B. 	C. 	D. 
Câu 15. Cho hàm số có đồ thị (C). Tìm phương trình tiếp tuyến với đồ thị (C) tại điểm có hệ số góc nhỏ nhất. A. . 	B. . 	C. . 	D. .
Câu 16. Tìm m để hàm số không có cực trị.
 A. . 	B. .	C. .	D. .
Câu 17. Cho hàm số . Khẳng định nào sau đây là khẳng định đúng?
	A. Đồ thị hàm số có tiệm cận ngang là y = 3. 	B. Đồ thị hàm số có tiệm cận đứng là .
	C. Đồ thị hàm số có tiệm cận ngang là . D. Đồ thị hàm số không có tiệm cận.
Câu 18. Đồ thị sau đây là của hàm số:
Với giá trị nào của m thì phương trình có ba nghiệm phân biệt. ? 
	A. .	B. .	C. . D. . 
Câu 19. Cho hàm số có đồ thị (C). Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung.A. . 	B. . 	C. . 	D. . 
Câu 20. Cho hàm số có đồ thị (C). Tìm phương trình tiếp tuyến của (C) tại điểm có hoành độ là 1.
	A. . 	B. . 	C. . 	D. . 
Câu 21. Cho biểu thức . Hãy tìm biểu thức K được viết dưới dạng lũy thừa với số mũ hữu tỉ.
 A. 	B. 	C. 	D. 
Câu 22. Tìm tất cả các giá trị thực của để biểu thức có nghĩa.
 A. 	B. 	C. 	D. 
Câu 23. Cho Tính giá trị của biểu thức .A. B. 	C. 	D. 
Câu 24. Tìm tất cả các giá trị của m để phương trình có nghiệm.
A. . 	B. .	C..	D. .
Câu 25. Tìm tập nghiệm của phương trình: A. B. 	C. 	D. 
Câu 26. Tìm tập nghiệm của phương trình: .A. 	B. 	C. 	D. 
Câu 27. Tìm tập nghiệm của phương trình: .A. 	B. 	C. 	D. 
Câu 28. Tìm tập nghiệm của phương trình: .A. 	B. 	C. 	D. 
Câu 29. Tìm tập nghiệm của phương trình: .
A. 	B. 	C. 	D. 
Câu 30. Cho phương trình . Trong các khẳng định sau đây khẳng định nào là khẳng định đúng?A. Phương trình có hai nghiệm dương 	B. Phương trình có một nghiệm âm và một nghiệm dương	
C. Phương trình có hai nghiệm âm	D. Phương trình vô nghiệm
Câu 31. Tính tổng các nghiệm của phương trình: .
A. . 	B. .	C. .	D. .
Câu 32. Tìm tập nghiệm của phương trình: .A. . B. .C. .	D. .
Câu 33. Tìm tập nghiệm của phương trình: .A. B. 	C. 	D. 
Câu 34. Tìm tập nghiệm của phương trình: .
A. 	B. 	C. 	D. 
Câu 35. Tìm tập nghiệm của phương trình: .A. B. C. 	D. 
Câu 36. Cho khối lăng trụ (H) có thể tích là , đáy là tam giác đều cạnh. Tính độ dài chiều cao của khối lăng trụ (H). A. 12a. 	B. 3a. 	C. . D. .
Câu 37. Cho khối chóp S.ABC, M và N lần lượt là trung điểm của cạnh SA, SB. Thể tích khối chóp S.ABC bằng 8a3. Tính thể tích của khối chóp S.MNC.A. 2a3 . 	B. a3 . 	C. a3 . D. a3.
Câu 38. Cho khối chóp S.ABC , M là trung điểm của cạnh SC. Tính tỉ số thể tích của khối chóp S.MAB và thể tích khối chóp S.ABC.A. . 	B. . 	C. . 	D. .
Câu 39. Cho một tấm nhôm hình vuông cạnh 12 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm x để hộp nhận được có thể tích lớn nhất
 A. x = 6. 	B. x = 3. 	C. x = 2. 	D. x = 4. 
Câu 40. Cho khối chóp S.ABC có SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với (ABC), AB=2a và tam giác ABC có diện tích bằng 6a2. Tính thể tích khối chóp S.ABC.
 A. 2a3 . 	B. 6a3 . 	C. 12a3 . 	D. 4a3. 
Câu 41. Cho hình chóp S.ABC có ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của S trên (ABC) là điểm H thuộc cạnh BC sao cho HC = 2HB. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 600. Tính thể tích khối chóp S.ABC. A. a3 	B. a3 	C. a3 	D. a3 	
Câu 42. Cho khối chóp S.ABCD có SA(ABCD), SB=a và ABCD là hình vuông cạnh 3a. Tính thể tích khối chóp S.ABCD.A. a3 . 	B. 9a3 . 	C. a3 . 	D. 18a3.
Câu 43. Cho khối chóp S.ABCD có SA(ABCD), và ABCD là hình vuông cạnh . Tính bán kính R của mặt cầu ngoại tiếp khối chóp S.ABCD.A. 	B. C. 	D. 
Câu 44. Cho hình chóp S.ABC có SA (ABC), góc giữa SB và (ABC) bằng 600 ; tam giác ABC đều cạnh 3a. Tình thể tích khối chóp S.ABC. A. a3 	B. a3 	C. a3 	D. a3
Câu 45. Cho khối chóp S.ABC có thể tích là . Tam giác SAB có diện tích là . Tính khoảng cách d từ C đến mặt phẳng (SAB). A. .	B. . C. . 	D. .
Câu 46. Cho khối chóp S.ABC có thể tích là . Tam giác SBC có diện tích là . Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).A. .	B. . C. . 	D. .
Câu 47. Cho khối chóp S.ABC có thể tích là . Tam giác SBC diện tích là . Tính khoảng cách h từ điểm A đến mặt phẳng (SBC). A. 	B. C. 	D. 
Câu 48. Cho khối chóp S.ABCD có SA(ABCD), và ABCD là hình vuông cạnh . Tính khoảng cách b giữa hai đường thằng SB và AD A. 	B. C. D. 
Câu 49. Cho khối chóp đều S.ABCD có thể tích là, điểm M là trung điểm của cạnh bên SA~. Tính thể tích của S.MBC.A..	B.. C.. 	D..
Câu 50. Cho khối chóp đều S.ABCD có thể tích là . Diện tích tam giác SAB là . Tính khoảng cách từ điểm D đến mặt phẳng (SAB).
 A. 	B. C. D. 

Tài liệu đính kèm:

  • docde_thi_trac_nghiem_hoc_ki_i_mon_toan_lop_12_ma_de_01.doc