Bài giảng Hình học Lớp 12 - Tiết 7: Bài tập Thể tích khối đa diện - Đỗ Hữu Hoàng Thu

Bài giảng Hình học Lớp 12 - Tiết 7: Bài tập Thể tích khối đa diện - Đỗ Hữu Hoàng Thu

Cho hình chóp 𝑆.𝐴𝐵𝐶𝐷 có đáy 𝐴𝐵𝐶𝐷 là hình vuông cạnh 𝑎, mặt bên (𝑆𝐴𝐵) là tam giác cân tại 𝑆 và nằm trong mặt phẳng vuông góc với đáy; góc giữa 𝑆𝐶 và mặt phẳng đáy bằng 45^𝑜.

Tính thể tích khối chóp bằng:

 

pptx 21 trang Hoài Vân Nam 05/07/2023 3210
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Hình học Lớp 12 - Tiết 7: Bài tập Thể tích khối đa diện - Đỗ Hữu Hoàng Thu", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
12B2 
Tập 
t hể 
l ớp 
Chào mừng quý thầy cô về dự giờ 
HÌNH HỌC 12 
BÀI TẬP 
THỂ TÍCH KHỐI ĐA DIỆN 
Tiết ppct : 7 
Giáo Viên Thực Hiện : Đỗ Hữu Hoàng Thu 
LỚP : 12B2 
Môi trường biển, sông, hồ đang bị ô nhiễm do rác thải của con người. Hãy cứu các loài sinh vật dưới biển bằng cách dọn sạch rác qua việc trả lời đúng các 
câu hỏi. 
DỌN SẠCH 
ĐẠI DƯƠNG 
4 
1 
2 
3 
5 
Cho khối chóp có đáy là hình vuông cạnh a và chiều cao bằng 4a. Thể tích khối chóp đã cho bằng 
Cho hình chóp tứ giác có đáy là hình vuông cạnh , cạnh bên vuông góc với mặt phẳng đáy và . Tính thể tích của khối chóp 
Cho khối lăng trụ đứng có đáy là tam giác đều cạnh và 
Thể tích của khối lăng trụ đã cho bằng 
Cho hình chóp có đáy là tam giác đều cạnh , cạnh bên vuông góc với đáy và thể tích của khối chóp đó bằng . Tính cạnh bên . 
Cho khối lăng trụ có diện tích đáy bằng , khoảng cách giữa hai đáy của lăng trụ bằng . Tính thể tích của khối lăng trụ 
Thể lệ trò chơi : 
Mỗi nhóm chọn một mảnh ghép và trả lời trong 2 phút , sau 2 phút đó nhóm được chọn mảnh ghép không có câu trả lời thì nhường quyền cho nhóm nào có câu trả lời nhanh nhất. 
Sau 5 mảnh ghép được mở ra nhóm nào có câu trả lời nhanh nhất thì thắng . 
- M ảnh ghép thứ 6 tự mở và nhóm nào nhanh và đúng thì được điểm . 
( mỗi mảnh ghép 10 điểm ) 
- Trả lời chính xác bức tranh và câu hỏi phụ của GV : 20 điểm 
2 
3 
5 
Bức tranh bí ẩn 
1 
2 
4 
5 
6 
3 
Cho hình chóp tam giác có đáy là tam giác vuông tại , , , cạnh bên vuông góc với mặt đáy và hợp với mặt đáy một góc 
Tính thể tích của khối chóp . 
Đáp án : 
1 
Cho hình chóp có đáy là hình vuông cạnh , mặt bên là tam giác cân tại và nằm trong mặt phẳng vuông góc với đáy; góc giữa và mặt phẳng đáy bằng . 
Tính thể tích khối chóp bằng: 
Đáp án: 
2 
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng , góc giữa cạnh bên và mặt đáy bằng . Tính thể tích V của khối chóp ? 
Đáp án: 
3 
Cho tứ diện có các cạnh , , và đôi một vuông góc với nhau; , và . Gọi M, N, P tương ứng là trung điểm các cạnh BC , CD , DB . Tính thể tích V của tứ diện A,MNP . 
Đáp án: 
4 
Cho hình chóp có đáy là tam giác vuông cân tại , , và . Gọi , lần lượt là hình chiếu vuông góc của lên , . Tính thể tích tứ diện . 
Đáp án: 
5 
Cho lăng trụ tam giác có đáy là tam giác đều cạnh , góc giữa cạnh bên và mặt đáy bằng . Hình chiếu của lên là trung điểm của . Tính thể tích khối lăng trụ 
Đáp án: 
6 
Các em biết gì về Ta-Let ? 
Thales sống trong khoảng thời gian từ năm 624 TCN– 546 TCN, ông sinh ra ở thành phố Miletos, một thành phố cổ trên bờ biển gần cửa sông Maeander (của Thổ Nhĩ Kỳ). 
Tuổi thọ của ông không được biết một cách chính xác. Có hai nguồn: một nguồn cho là ông sống khoảng 90 tuổi, còn một nguồn khác cho là ông sống khoảng 80 tuổi. 
Định lý Thales: Hai đường thẳng song song định ra trên hai đường thẳng giao nhau những đoạn thẳng tỷ lệ 
Thales là người đầu tiên nghiên cứu về thiên văn học, hiểu biết về hiện tượng nhật thực diễn ra do mặt trăng che khuất mặt trời. 
Ông cũng nghĩ ra phương pháp đo chiều cao của các kim tự tháp Ai Cập căn cứ vào bóng của chúng 
Chân Thành Cảm Ơn Quý Thầy Cô 
 Và Các Em Học Sinh 

Tài liệu đính kèm:

  • pptxbai_giang_hinh_hoc_lop_12_tiet_7_bai_tap_the_tich_khoi_da_di.pptx