Đề ôn thi THPT Quốc gia môn Toán Lớp 12 - Năm 2021 - Mã đề 44 (Có đáp án)

Đề ôn thi THPT Quốc gia môn Toán Lớp 12 - Năm 2021 - Mã đề 44 (Có đáp án)

Câu 1 (TH): Họ các nguyên hàm F (x) của hàm số là

A. B.

C. D.

Câu 2 (TH): Hàm số đồng biến trên khoảng

A. B. C. D.

Câu 3 (TH): Cho cấp số cộng có số hạng đầu và công sai . Giá trị bằng

A. 250. B. 17. C. 22. D. 12.

Câu 4 (TH): Cho hình nón đỉnh S có bán kính đáy bằng . Mặt phẳng qua S cắt đường tròn đáy tại A, B sao cho . Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng là . Thể tích khối nón bằng

A. B. C. D.

Câu 5 (NB): Với k và n là hai số nguyên dương tùy ý thỏa mãn . Mệnh đề nào dưới đây đúng?

A. B. C. D.

Câu 6 (VDC): Cho hàm số thỏa mãn . Giá trị bằng

A. B. C. D.

Câu 7 (NB): Trong không gian Oxyz, cho . Tọa độ của là

A. B. C. D.

Câu 8 (NB): Họ nguyên hàm của hàm số là

A. B. C. D.

 

doc 5 trang phuongtran 3590
Bạn đang xem tài liệu "Đề ôn thi THPT Quốc gia môn Toán Lớp 12 - Năm 2021 - Mã đề 44 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ SỐ 44
BỘ ĐỀ ÔN THI THPT QUỐC GIA NĂM 2021
Môn thi: TOÁN
Thời gian làm bài: 90 phút, không kể thời gian phát đề
Câu 1 (TH): Họ các nguyên hàm F (x) của hàm số là
A. 	B. 
C. 	D. 
Câu 2 (TH): Hàm số đồng biến trên khoảng
A. 	B. 	C. 	D. 
Câu 3 (TH): Cho cấp số cộng có số hạng đầu và công sai . Giá trị bằng
A. 250.	B. 17.	C. 22.	D. 12.
Câu 4 (TH): Cho hình nón đỉnh S có bán kính đáy bằng . Mặt phẳng qua S cắt đường tròn đáy tại A, B sao cho . Biết rằng khoảng cách từ tâm đường tròn đáy đến mặt phẳng là . Thể tích khối nón bằng
A. 	B. 	C. 	D. 
Câu 5 (NB): Với k và n là hai số nguyên dương tùy ý thỏa mãn . Mệnh đề nào dưới đây đúng?
A. 	B. 	C. 	D. 
Câu 6 (VDC): Cho hàm số thỏa mãn . Giá trị bằng
A. 	B. 	C. 	D. 
Câu 7 (NB): Trong không gian Oxyz, cho . Tọa độ của là
A. 	B. 	C. 	D. 
Câu 8 (NB): Họ nguyên hàm của hàm số là
A. 	B. 	C. 	D. 
Câu 9 (TH): Tập nghiệm của bất phương trình là
A. 	B. 	C. 	D. 
Câu 10 (TH): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, và . Giá trị bằng
A. 	B. 	C. 	D. 
Câu 11 (TH): Biết với . Khẳng định nào dưới đây đúng?
A. 	B. 
C. 	D. 
Câu 12 (TH): Cho số phức z thỏa mãn . Điểm biểu diễn của số phức là
A. 	B. 	C. 	D. 
Câu 13 (NB): Nghiệm của phương trình là
A. 	B. 	C. 	D. 
Câu 14 (VD): Giả sử a, b là các số thực sao cho đúng với mọi các số thực dương x, y, z thỏa mãn và . Giá trị của bằng
A. 	B. 	C. 	D. 
Câu 15 (NB): Phần thực và phần ảo của số phức lần lượt là
A. 2 và 1.	B. 1 và 2.	C. 1 và .	D. 1 và i.
Câu 16 (TH): Cho hàm số có đạo hàm . Số điểm cực trị của hàm số là
A. 5	B. 3	C. 2	D. 1
Câu 17 (TH): Đạo hàm của hàm số là
A. 	B. 	
C. 	D. 
Câu 18 (TH): Hàm số đồng biến trên khoảng
A. 	B. và 	C. và 	D. 
Câu 19 (TH): Tập xác định của hàm số là
A. 	B. 	C. 	D. 
Câu 20 (TH): Cho và ; giá trị bằng
A. 7	B. 5	C. -1	D. 1
Câu 21 (VD): Lớp 12A có 35 học sinh, trong đó có 3 học sinh cùng tên là Trang, 2 học sinh cùng tên là Huy. Xếp ngẫu nhiên 35 học sinh thành một hàng dọc. Xác suất để 3 học sinh tên Trang đứng cạnh nhau và 2 học sinh tên Huy đứng cạnh nhau là
A. 	B. 	C. 	D. 
Câu 22 (TH): Gọi và là hai nghiệm phức của phương trình . Giá trị biểu thức bằng 
A. 	B. 	C. 	D. 
Câu 23 (VD): Kí hiệu là hai nghiệm phức của phương trình . Giá trị bằng 
A. 	B. 	C. 	D. 
Câu 24 (VD): Số giao điểm của đồ thị hàm số và đường thẳng là
A. 0	B. 1	C. 2	D. 3
Câu 25 (VD): Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a, O là trọng tâm tam giác ABC và Thể tích của khối lăng trụ ABC . A 'B 'C ' bằng
A. 	B. 	C. 	D. 
Câu 26 (NB): Cho hàm số liên tục trên [1; 2]. Quay hình phẳng xung quanh trục Ox được khối tròn xoay có thể tích
A. 	B. 	
C. 	D. 
x
1
-
-
y
1
 3
0
Câu 27 (TH): Cho hàm số có bảng biến thiên như hình bên. Số đường tiệm cận của đồ thị hàm số là
A.1	B. 4	
C. 3	D. 2
Câu 28 (NB): Cho hai điểm .Phương trình mặt phẳng trung trực của đoạn AB là
A. 	B. 	C. 	D. 
Câu 29 (NB): Đường thẳng có một vectơ chỉ phương là 
A. 	B. 	C. 	D. 
Câu 30 (NB): Giá trị nhỏ nhất của hàm số trên đoạn bằng
A. 0.	B. 3.	C.11.	D. 
Câu 31 (VD): Tích các nghiệm thực của phương trình bằng
A. 	B. 	C. 	D. 
x
1
-
-
y
1
 3
0
Câu 32 (NB): Cho hàm số có bảng biến thiên như hình bên. Số nghiệm của phương trình là
A. 3	B. 1
C. 2	D. 4
Câu 33 (VD): Cho với a, b là các số nguyên dương. Giá trị bằng
A. 24.	B. 26.	C. 27.	D. 23.
Câu 34 (TH): Cho ba điểm . Đường thẳng đi qua trực tâm H của tam giác ABC và vuông góc với mp(ABC) có phương trình là
A. 	B. 	C. 	D. 
Câu 35 (TH): Cho a là số thực dương khác 1. Tính .
A. 	B. 	C. 	D. 
Câu 36 (VD): Cho hình chóp tứ giác đều S.ABCD cạnh đáy bằng a. Gọi E là điểm đối xứng với D qua trung điểm của S A; M, N lần lượt là trung điểm AE , BC. Khoảng cách giữa hai đường thẳng MN, SC bằng
A. 	B. 	C. 	D. 
Câu 37 (VD): Cho đường thẳng và ba điểm . Điểm thỏa mãn đạt giá trị nhỏ nhất. Tính .
A. 	B. 	C. 	D. 
Câu 38 (VD): Trong các mặt cầu tiếp xúc với hai đường thẳng ; phương trình mặt cầu có bán kính nhỏ nhất là
A. 	B. 
C. 	D. 
Câu 39 (VD): Cho hàm số có đạo hàm liên tục trên , hàm số có đồ thị như hình vẽ. Số điểm cực trị của hàm số là
A. 3.	B. 0.	
C. 1.	D. 2.
Câu 40 (VD): Cho hàm số . Gọi S là tập tất cả các số tự nhiên m sao cho hàm số đồng biến trên . Tổng các phần tử của S là
A. 6	B. 8	C. 9	D. 10
Câu 41 (NB): Hình chóp tứ giác có 
A. đáy là một tứ giác.	B. 6 cạnh.	C. 4 đỉnh	D. 4 mặt.
x
-1
2
5
-
0
+
0
4
-1
5
Câu 42 (VD): Cho hàm số có bảng biến thiên trên đoạn như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình có đúng 3 nghiệm phân biệt trên khoảng ?
A. 7	B. 4
C. 6	D. 5
Câu 43 (TH): Cho hai điểm và . Mặt cầu nhận đoạn AB là đường kính có phương trình là
A. 	B. 
C. 	D. 
Câu 44 (VD): Cho đường thẳng và hai điểm . Đường thẳng qua A và cắt d sao cho khoảng cách từ B đến nhỏ nhất. Phương trình của là
A. 	B. 	C. 	D. 
Câu 45 (VD): Quay hình phẳng xung quanh trục Ox được khối tròn xoay có thể tích bằng
A. 	B. 	C. 	D. 
Câu 46 (VD): Cho số phức z thỏa mãn và . Tính .
A. 	B. 	C. 	D. 
Câu 47 (VD): Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông đỉnh A, . Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) là điểm H thuộc đoạn BC. Khoảng cách từ A đến mặt phẳng (BCC'B’) bằng . Thể tích khối lăng trụ ABC.A’B’C’ bằng
A. 	B. 	C. 	D. 
Câu 48 (TH): Cho khi đó bằng
A. 8	B. 6	C. 7	D. 4
Câu 49 (NB): Mặt phẳng có một vectơ pháp tuyến là
A. 	B. 	C. 	D. 
Câu 50 (VD): Cho hàm số liên tục trên và có đồ thị như hình bên. Tổng giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng
A. 6	B. 8
C. 4	D. 5
HƯỚNG DẪN GIẢI CHI TIẾT
1.C
2.C
3.B
4.A
5.A
6.C
7.B
8.C
9.A
10.B
11.D
12.A
13.B
14.D
15.B
16.C
17.C
18.B
19.B
20.D
21.D
22.C
23.D
24.C
25.A
26.B
27.C
28.D
29.A
30.D
31.A
32.C
33.A
34.B
35.D
36.A
37.A
38.C
39.D
40.A
41.A
42.D
43.D
44.C
45.B
46.A
47.B
48.D
49.B
50.A

Tài liệu đính kèm:

  • docde_on_thi_thpt_quoc_gia_mon_toan_lop_12_nam_2021_ma_de_44_co.doc