Đề ôn tập môn Toán Lớp 12 - Chủ đề 9: Bài tập lãi suất, tăng trưởng

Đề ôn tập môn Toán Lớp 12 - Chủ đề 9: Bài tập lãi suất, tăng trưởng

Công thức:

 là số tiền gốc ban đầu,

 là lãi suất/kỳ hạn và là số kỳ hạn.

 là tổng số tiền cả gốc lẫn lãi thu được.

Như vậy số tiền lãi thu được là: .

Ví dụ 1: [Đề thi THPT Quốc gia 2017] Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn 100 triệu đồng bao gồm cả gốc và lãi? Giả định trong suốt thời gian, lãi suất không đổi và người đó không rút tiền ra.

A. 13 năm B. 12 năm C. 14 năm D. 11 năm

 

doc 22 trang phuongtran 16971
Bạn đang xem 20 trang mẫu của tài liệu "Đề ôn tập môn Toán Lớp 12 - Chủ đề 9: Bài tập lãi suất, tăng trưởng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNG
II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI
@ BÀI TOÁN 1. CÔNG THỨC LÃI KÉP
Công thức: 
 là số tiền gốc ban đầu,
 là lãi suất/kỳ hạn và là số kỳ hạn.
 là tổng số tiền cả gốc lẫn lãi thu được.
Như vậy số tiền lãi thu được là: .
Ví dụ 1: [Đề thi THPT Quốc gia 2017] Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 6%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn 100 triệu đồng bao gồm cả gốc và lãi? Giả định trong suốt thời gian, lãi suất không đổi và người đó không rút tiền ra.
A. 13 năm	B. 12 năm	C. 14 năm	D. 11 năm
Lời giải
Gọi là số năm cần để có hơn 100 triệu đồng.
Suy ra năm. Chọn B.
Ví dụ 2: [Đề thi THPT Quốc gia 2018] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 7,5%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
A. 11 năm	B. 9 năm	C. 10 năm	D. 12 năm
Lời giải
Áp dụng công thức lãi kép ta có: trong đó 
Suy ra .
Vậy cần ít nhất 10 năm để số tiền người đó thu được gấp đôi số tiền ban đầu. Chọn C.
Ví dụ 3: [Đề thi THPT Quốc gia 2017] Đầu năm 2016, ông A thành lập một công ty. Tổng số tiền ông A dùng để trả lương cho nhân viên trong năm 2016 là 1 tỷ đồng. Biết rằng cứ sau mỗi năm thì tổng số tiền dùng để trả lương cho nhân viên trong cả năm đó tăng thêm 15% so với năm trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền ông A dùng để trả lương cho nhân viên trong cả năm lớn hơn 2 tỷ đồng? 
A. Năm 2022	B. Năm 2021	C. Năm 2020	D. Năm 2023
Lời giải
Tổng số tiền ông A trả lương cho nhân viên sau năm là: 
Giải . Chọn B.
Ví dụ 4: [Đề thi ở GD&ĐT Hà Nội năm 2017] Ông Việt dự định gửi vào ngân hàng một số tiền với lãi suất 6,5% một năm. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Tính số tiền tối thiểu (triệu đồng, ) ông Việt gửi vào ngân hàng để sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy trị giá 30 triệu đồng.
A. 150 triệu đồng	B. 154 triệu đồng	C. 145 triệu đồng	D. 140 triệu đồng
Lời giải
Công thức lãi kép 
Tiền lãi ông Việt có sau 3 năm sẽ là tiền gốc lẫn lãi trừ đi số tiền gốc ban đầu
Ta có: triệu. Chọn C.
Ví dụ 5: Sau một thời gian làm việc, chị An có số vốn là 450 triệu đồng. Chị An chia số tiền thành hai phần và gửi ở hai ngân hàng Agribank và Sacombank theo phương thức lãi kép. Số tiền ở phần thứ nhất chị An gửi ở ngân hàng Agribank với lãi suất 2,1% một quý trong thời gian 18 tháng. Số tiền ở phần thứ hai chị An gửi ở ngân hàng Sacombank với lãi suất 0,73% một tháng trong thời gian 10 tháng. Tổng số tiền lãi thu được ở hai ngân hàng là 50,01059203 triệu đồng. Hỏi số tiền chị An đã gửi ở mỗi ngân hàng Agribank và Sacombank là bao nhiêu?
A. 280 triệu và 170 triệu	B. 170 triệu và 280 triệu
C. 200 triệu và 250 triệu	D. 250 triệu và 200 triệu
Lời giải
Gọi (triệu đồng) lần lượt là số tiền mà chị An gửi vào ngân hàng Agribank và Sacombank.
Số tiền lãi mà chị An nhận được khi gửi tiền vào ngân hàng Agribank là triệu.
Số tiền lãi mà chị An nhận được khi gửi tiền vào ngân hàng Sacombank là triệu.
Khi đó, ta có hệ phương trình . Chọn A.
Ví dụ 6: [Trích đề tham khảo của bộ GD&ĐT năm 2018] Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.424.000 đồng	B. 102.423.000 đồng
C. 102.016.000 đồng	D. 102.017.000 đồng
Lời giải
Số tiền người đó nhận được sau 6 tháng là . Chọn A.
@ BÀI TOÁN 2. CÔNG THỨC TĂNG TRƯỞNG DÂN SỐ
Công thức: trong đó là dân số năm ban đầu, là tỷ lệ tăng dân số/năm, là số năm và là dân số năm cần tìm.
Ví dụ 1: Theo báo cáo của chính phủ dân số của nước ta tính đến tháng 12 năm 2018 là 95,93 triệu người, nếu tỷ lệ tăng trưởng dân số trung bình hằng năm là 1,33% thì dân số nước ta vào tháng 12 năm 2025 là bao nhiêu?
Lời giải
Dân số nước ta vào tháng 12 năm 2025 là: triệu người.
Ví dụ 2: Dân số của một xã hiện nay là 10.000 người, người ta dự đoán sau 2 năm nữa dân số xã đó là 10404 người. Hỏi trung bình mỗi năm, dân số của xã đó tăng bao nhiêu phần trăm.
Lời giải
Theo công thức ta có: /năm.
@ BÀI TOÁN 3. HAO MÒN TÀI SẢN, DIỆN TÍCH RỪNG BỊ GIẢM 
̶ Công thức hao mòn tài sản: trong đó là giá trị tài sản lúc ban đầu, là giá trị tài sản sau năm và là tỷ lệ hao mòn tính theo năm.
̶ Công thức diện tích rừng bị giảm: trong đó là diện tích rừng ban đầu, là diện tích rừng sau năm và là tỷ lệ rừng giảm hằng năm.
Ví dụ 1: Giả sử cứ sau một năm diện tích rừng của nước ta giảm phần trăm diện tích hiện có. Hỏi sau 4 năm diện tích rừng của nước ta sẽ là bao nhiêu phần diện tích hiện nay?
A. 	B. 	C. 	D. 
Lời giải
Sau năm thứ , diện tích rừng còn lại là nên sau 4 năm diện tích rừng sẽ là phần diện tích nước ta hiện nay. Chọn D.
Ví dụ 2: Một người mua một chiếc xe SH trị giá 98 triệu đồng, tính giá trị của chiếc xe đó sau 5 năm, biết rằng cứ sau mỗi năm giá trị của chiếc xe giảm đi 10%.
Lời giải
Giá trị của chiếc xe sau 5 năm là: triệu đồng.
Ví dụ 3: Khi một kim loại được làm nóng đến bền kéo của nó giảm đi 50%. Sau khi kim loại vượt qua ngưỡng nếu nhiệt độ kim loại tăng thêm thì độ bền kéo của nó giảm đi 35% hiện có. Biết kim loại này có độ bền kéo là 280 dưới và được sử dụng trong việc xây dựng các lò công nghiệp. Nếu mức an toàn tối thiểu độ bền kéo của vật liệu này là 38 thì nhiệt độ an toàn tối đa của lò công nghiệp bằng bao nhiêu, tính theo độ Celsius?
A. 620	B. 615	C. 605	D. 610
Lời giải
Độ bền kéo là 280 dưới . Đến bền kéo của nó giảm đi 50% còn 140 .
Nhiệt độ kim loại tăng thì độ bền kéo của nó giảm đi 35% nên ta có
Suy ra . Mỗi chu kỳ tăng 3 chu kỳ tăng 
Nhiệt độ an toàn tối đa là . Chọn B.
@ BÀI TOÁN 4. TĂNG TRƯỞNG CỦA BÈO, CỦA VI KHUẨN 
̶ Tăng trưởng của bèo:
Giả sử lượng bèo ban đầu là và mỗi giờ lượng bèo tăng gấp 2 lần thì sau giờ lượng bèo sẽ là (nếu mỗi giờ tăng lần thì công thức là )
̶ Tăng trưởng của vi khuẩn:
Công thức: trong đó là số lượng vi khuẩn ban đầu, là số lượng vi khuẩn sau thời gian , là tỷ lệ tăng trưởng , là thời gian tăng trưởng.
Ví dụ 1: Một người thả 1 lá bèo vào một cái ao, sau 12 giờ thì bào sinh sôi phủ kín mặt ao. Hỏi sau mấy giờ thì bèo phủ kín mặt ao, biết rằng sau mỗi giờ thì lượng bèo tăng gấp 10 lần lượng bèo trước đó và tốc độ tăng không đổi.
A. giờ	B. giờ 	C. giờ	D. giờ
Lời giải
Ta có: , khi đó 
Gọi là thời gian bèo phủ mặt hồ thì 
. Chọn A.
Ví dụ 2: Người ta thả một lá bèo vào một hồ nước. Sau thời gian giờ, bèo sẽ sinh sôi kín cả mặt hồ. Biết rằng sau mỗi giờ, lượng lá bèo tăng gấp 10 lần lượng lá bèo trước đó và tốc độ tăng không đổi. Hỏi sau mấy giờ thì số lá bèo phủ kín mặt hồ?
A. 	B. 	C. 	D. 
Lời giải
Ta có: 
Gọi giờ là khoảng thời gian cần để bèo phủ kín mặt hồ, suy ra 
Suy ra . Chọn C.
Ví dụ 3: Trong nông nghiệp bèo hoa dâu được dùng làm phân bón, nó rất tốt cho cây trồng. Mới đây một nhóm các nhà khoa học Việt Nam đã phát hiện ra bèo hoa dâu có thể được dùng để chiết xuất ra chất có tác dụng kích thích hệ miễn dịch và hỗ trợ điều trị bệnh ung thư. Bèo hoa dâu được thả nuôi trên mặt nước. Một người đã thả một lượng bèo hoa dâu chiếm 4% diện tích mặt hồ. Biết rằng cứ sau đúng một tuần bèo phát triển thành 3 lần lượng đã có và tốc độ phát triển của bèo ở mọi thời điểm như nhau. Sau bao nhiêu ngày bèo sẽ vừa phủ kín mặt hồ?
A. 	B. 	C. 	D. 
Lời giải
Gọi là lượng bèo ban đầu, để phủ kín mặt hồ thì lượng bèo là 
Sau 1 tuần số lượng bèo là suy ra sau tuần lượng bèo là: 
Để lượng bèo phủ kín mặt hồ thì thời gian để bèo phủ kín mặt hồ là: . Chọn A.
Ví dụ 4: Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức trong đó là số lượng vi khuẩn ban đầu, là số lượng vi khuẩn có sau (phút), là tỷ lệ tăng trưởng , (tính theo phút) là thờ gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 500 con và sau 5 giờ có 1500 con. Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con?
A. 35 giờ	B. 45 giờ	C. 25 giờ	D. 15 giờ
Lời giải
Theo bài ra ta có: 
Khi đó số lượng vi khuẩn đạt 121500 con thì:
 giờ. Chọn C.
Ví dụ 5: Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức trong đó là số lượng vi khuẩn ban đầu, là số lượng vi khuẩn có sau (phút), là tỷ lệ tăng trưởng , (tính theo phút) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 100 con và sau 5 giờ có 300 con. Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn tăng gấp 10 lần so với số lượng ban đầu?
A. giờ 	B. giờ	C. giờ	D. giờ
Lời giải
Theo bài ra ta có: 
Khi đó số lượng vi khuẩn tăng gấp 10 lần khi:
 giờ. Chọn C.
Ví dụ 6: Sự tăng trưởng của một loài vi khuẩn được tính theo công thức , trong đó là số lượng vi khuẩn ban đầu, là tỷ lệ tăng trưởng , (tính theo giờ) là thời gian tăng trưởng. Biết số vi khuẩn ban đầu có 1000 con và sau 10 giờ là 5000 con. Hỏi sau bao lâu thì số lượng vi khuẩn tăng gấp 10 lần
A. (giờ)	B. (giờ)	C. (giờ)	D. (giờ)
Lời giải
Theo đề bài ta có 
Gọi giờ là thời gian để số vi khuẩn tăng gấp 10, suy ra (giờ). Chọn C.
Ví dụ 7: [Đề thử nghiệm Bộ GD&ĐT 2017] Số lượng của loại vi khuẩn A trong một phòng thí nghiệm được tính theo công thức , trong đó là số lượng vi khuẩn A lúc ban đầu, là số lượng vi khuẩn A có sau phút. Biết sau 3 phút thì số lượng vi khuẩn A là 625 con. Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A là 10 triệu con?
A. 48 phút	B. 19 phút	C. 7 phút	D. 12 phút
Lời giải
Ta có: nghìn con
Do đó triệu con =10000 nghìn con khi 
 phút. Chọn C.
Ví dụ 8: Trong môi trường nuôi cấy ổn định người ta nhận thấy cứ sau 5 ngày số lượng loài vi khuẩn A tăng lên gấp đôi, còn sau 10 ngày số lượng loài vi khuẩn B tăng lên gấp ba. Giả sử ban đầu có 100 con vi khuẩn A và 200 con vi khuẩn B, hỏi sau bao nhiêu ngày nuôi cấy trong môi trường đó thì số lượng hai loài bằng nhau, biết rằng tốc độ tăng trưởng của mỗi loài ở mọi thời điểm là như nhau?
A. ngày	B. ngày
C. ngày	D. ngày
Lời giải
Giả sử sau ngày số lượng hai loài vi khuẩn bằng nhau. Khi đó, ta có
Lại có ngày. Chọn D.
Ví dụ 9: Số lượng của loại virut trong một phòng thí nghiệm được tính theo công thức trong đó là số lượng virut lúc ban đầu, là số lượng virut có sau thời gian phút. Biết sau 5 phút thì số lượng virut là 815.000 con. Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng virut là 22.005.000 con?
A. 8 phút	B. 30 phút	C. 27 phút	D. 15 phút
Lời giải
Sau 5 phút thì số lượng virut là 815.000 con, suy ra con.
Gọi phút là thời gian để có 22.005.000 con virut, suy ra phút. Chọn A.
@ BÀI TOÁN 5. TIỀN GỬI TIẾT KIỆM
Giả sử một người mỗi tháng gửi số tiền là (tiền) trong tháng. Số tiền cả gốc lẫn lãi sinh ra từ số tiền gửi của:
Tháng thứ nhất là: 
Tháng thứ hai là: 
 .
Tháng thứ là: 
Suy ra sau tháng, số tiền cả gốc lẫn lãi thu được là: 
Áp dụng tổng của cấp số nhân với 
Chú ý. Nếu tháng thứ nhất gửi số tiền là , tháng thứ hai gửi số tiền là ..tháng thứ gửi số tiền là thì công thức là: 
Ví dụ 1: Bạn Tuấn muốn có một triệu đồng sau 15 tháng thì mỗi tháng phải gửi vào ngân hàng bao nhiêu tiền, biết lãi suất của ngân hàng là 0,6% mỗi tháng (làm tròn đến hàng đơn vị).
A. 63530 đồng	B. 65530 đồng	C. 58530 đồng	D. 65540 đồng
Lời giải
Theo cách thiết lập công thức trên ta được: 
 đồng. Chọn A.
Ví dụ 2: Một người hàng tháng gửi vào ngân hàng số tiền là 1 triệu đồng. Biết lãi suất tiết kiệm của ngân hàng không đổi trong suốt quá trình gửi và bằng 0,35%. Hỏi sau 1 năm người đó có bao nhiêu tiền.
A. 1,043 triệu đồng	B. 12,28 triệu đồng
C. 12,51 triệu đồng	D. 14,01 triệu đồng
Lời giải
Theo cách thiết lập công thức trên ta được: 
 triệu đồng. Chọn C.
Ví dụ 3: Một người muốn sau một năm phải có số tiền là 20 triệu đồng để mua xe máy. Hỏi người đó phải gửi vào ngân hàng một khoản tiền như nhau hàng tháng là bao nhiêu. Biết lãi suất tiết kiệm là 0,27%/tháng (chọn kết quả gần nhất).
A. 1,64 triệu đồng	B. 1,78 triệu đồng	C. 1,14 triệu đồng	D. 1,45 triệu đồng
Lời giải
Theo cách thiết lập công thức trên ta được: 
 triệu đồng. Chọn A.
@ BÀI TOÁN 6. TRẢ GÓP HÀNG THÁNG
Giả sử một người vay số tiền là , sau đúng một tháng kể từ ngày vay, mỗi tháng người đó trả số tiền là sau tháng
Số tiền cả gốc lẫn lãi sinh ra từ số tiền sau tháng là: 
Số tiền gốc lẫn lãi sinh ra từ số tiền của tháng thứ nhất là: 
Số tiền gốc lẫn lãi sinh ra từ số tiền của tháng thứ hai là: 
Số tiền gốc lẫn lãi sinh ra từ số tiền của tháng thứ là: 
Như vậy số tiền đã trả là: 
Suy ra số tiền còn lại cần phải trả là: 
Để trả hết nợ thì .
Ví dụ 1: Một người vay ngân hàng 100 triệu đồng với lãi suất là 0,7%/tháng theo thỏa thuận cứ mỗi tháng người đó sẽ trả cho ngân hàng 5 triệu đồng và cứ trả hàng tháng như thế cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng thì người đó trả được hết nợ ngân hàng.
A. 22	B. 23	C. 24	D. 21
Lời giải
Ta có với là số tiền trả hàng tháng, là số tiền vay ngân hàng, là lãi suất
Do đó ta có nên sau 22 tháng sẽ trả hết nợ. Chọn A.
Ví dụ 2: Anh Bình mua một chiếc điện thoại giá 9 triệu đồng theo hình thức trả trước 30% và phần còn lại trả góp hàng tháng với lãi suất 0,9%/tháng. Biết rằng anh Bình muốn trả nợ cửa hàng theo cách: Sau đúng một tháng kể từ ngày mua, anh Bình bắt đầu trả nợ, hai lần trả nợ liên tiếp cách nhau đúng một tháng, số tiền trả nợ ở mỗi lần như nhau. Hỏi, sau 12 tháng anh Bình muốn trả hết nợ thì hàng tháng anh Bình phải trả cho cửa hàng bao nhiêu tiền (làm tròn đến ngàn đồng)? Biết lãi suất không thay đổi trong thời gian anh Bình trả nợ.
A. 556000 đồng	B. 795000 đồng	C. 604000 đồng	D. 880000 đồng
Lời giải
Số tiền ban đầu anh Bình nợ của hàng bằng triệu đồng.
Nợ của anh Bình với của hàng sau tháng được tính theo CT , trong đó là số tiền ban đầu còn nợ, là số tiền trả góp hàng tháng, là lãi suất hàng tháng và là số tháng.
Theo đề bài ta có đồng. Chọn A.
Ví dụ 3: Bạn An mua một chiếc máy tính giá 10 triệu đồng bằng hình thức trả góp với lãi suất 0,7%/tháng. Để mang máy về dùng, ban đầu An trả 3 triệu đồng. Kể từ tháng tiếp theo sau khi mua An trả mỗi tháng 500 ngàn đồng. Hỏi tháng cuối cùng An phải trả bao nhiêu tiền thì hết nợ (làm tròn đến đơn vị ngàn đồng)
A. 401 ngàn đồng	B. 375 ngàn đồng	C. 391 ngàn đồng	D. 472 ngàn đồng
Lời giải
Áp dụng công thức , với là số tiền trả mỗi tháng, là lãi suất và là tổng số tiền phải trả. Suy ra tháng.
Suy ra số tiền phải trả tháng cuối bằng ngàn đồng. Chọn C.
Ví dụ 4: Một học sinh muốn mua Iphone 7 Plus có giá 20 triệu đồng. Vì không có tiền nên em giấu bố mẹ đi mua trả góp kì hạn theo tháng với lãi suất 5% mỗi tháng. Nếu em muốn sau 18 tháng trả hết nợ thì mỗi tháng em cần trả số tiền là (kết quả được quy tròn về hàng nghìn đồng). Biết trong thời gian đó, lương của mẹ em mỗi tháng bằng 2,5 triệu, so sánh với lương của mẹ bạn đó ta có
A. Ít hơn 958.000 đồng	B. Nhiều hơn 912.000 đồng.
C. Ít hơn 789.000 đồng	D. Nhiều hơn 128.000 đồng
Lời giải
Đặt triệu đồng.
Ta có: triệu đồng
Do đó số tiền trả góp ít hơn triệu đồng. Chọn C.
@ BÀI TOÁN 7. MỘT SỐ DẠNG TOÁN KHÁC
Ví dụ 1: Theo dự báo với mức tiêu thụ dầu không đổi như hiện nay thì trữ lượng dầu của nước A sẽ hết sau 100 năm nữa. Nhưng do quản lí kém, bị một số kẻ gian lấy trộm để bán lậu nên kể từ năm thứ 2 trở đi mức tiêu thụ tăng lên 4% mỗi năm so với năm liền trước. Hỏi sau bao nhiêu năm số dầu dự trữ của nước A sẽ hết?
A. 39	B. 45	C. 41	D. 42
Lời giải
Gọi số dầu tiêu thụ mỗi năm theo dự tính là . Suy ra tổng dự trữ dầu là 
Gọi là số năm thực tế tiêu thụ hết dầu, suy ra 
 năm. Chọn D.
Ví dụ 2: [Đề thi chuyên ĐH Vinh năm 2017] Các khí thải gây hiệu ứng nhà kính là nguyên nhân chủ yếu làm Trái Đất nóng lên. Theo OECD (Tổ chức Hợp tác và Phát triển kinh tế thế giới), khi nhiệt độ Trái Đất tăng lên thì tổng giá trị kinh tế toàn cầu giảm. Người ta ước tính rằng, khi nhiệt độ Trái đất tăng thêm thì tổng giá trị kinh tế toàn cầu giảm 3%; còn khi nhiệt độ Trái đất tăng thêm thì tổng giá trị kinh tế toàn cầu giảm 10%. Biết rằng, nếu nhiệt độ Trái đất tăng thêm , tổng giá trị kinh tế toàn cầu giảm thì , trong đó là các hằng số dương.
Khi nhiệt độ Trái đất tăng thêm bao nhiêu thì tổng giá trị kinh tế toàn cầu giảm đến 20%?
A. 	B. 	C. 	D. 
Lời giải
Theo bài ta có . Ta cần tìm sao cho 
Từ (1) và 
. Chọn D.
Ví dụ 3: Khi ánh sáng đi qua một môi trường (chẳng hạn như không khí, nước, sương mù, ) cường độ sẽ giảm dần theo quãng đường truyền , theo công thức trong đó là cường độ của ánh sáng khi bắt đầu truyền vào môi trường và là hệ số hấp thu của môi trường đó. Biết rằng nước biển có hệ số hấp thu và người ta tính được rằng khi đi từ độ sau 2m xuống đến độ sâu 20m thì cường độ ánh sáng giảm lần. Số nguyên nào sau đây gần với nhất
A. 8	B. 9	C. 10	D. 90
Lời giải
Ta có: m.
Theo công thức ta có: . Chọn B.
Ví dụ 4: Một điện thoại đang nạp pin, dung lượng nạp được tính theo công thức , với là khoảng thời gian tính bằng giờ và là dung lượng nạp tối đa (pin đầy). Nếu điện thoại nạp pin từ lúc cạn pin (tức là dung lượng pin lúc bắt đầu nạp là 0%) thì bao lâu sau sẽ nạp được 90% (kết quả làm tròn đến hàng phần trăm)?
A. 	B. 	C. 	D. 
Lời giải
Ta có: . Chọn A.
Ví dụ 5: Ông An bắt đầu đi làm với mức lương khởi điểm là 1 triệu đồng một tháng. Cứ sau ba năm thì ông An được tăng lương 40%. Hỏi sau tròn 20 năm đi làm, tổng tiền lương ông An nhận được là bao nhiêu (làm tròn đến hai chữ số thập phân sau dấu phẩy)?
A. 726,74 triệu đồng.	B. 716,74 triệu đồng.
C. 858,72 triệu đồng.	D. 768,37 triệu đồng.
Lời giải
Số tiền ông An kiếm được trong 3 năm đầu là: triệu đồng
Số tiền ông An có được sau 18 năm đi làm là
Số tiền ông An nhận sau 2 năm cuối (năm thứ 19 và 20) là 
Do đó tổng số tiền ông An thu được là: triệu đồng. Chọn D.
Ví dụ 6: Một nguồn âm đẳng hướng đặt tại điểm có công suất truyền âm không đổi. Mức cường độ âm tại điểm cách một khoảng được tính bởi công thức (Ben) với là hằng số. Biết điểm thuộc đoạn thẳng và mức cường độ âm tại và là và . Tính mức cường độ âm tại trung điểm (làm tròn đến hai chữ số sau dấu phẩy).
A. 3,59 Ben	B. 3,06 Ben	C. 3,69 Ben	D. 4 Ben
Lời giải
Ta có 
Gọi là trung điểm 
Suy ra mức cường độ âm tại bằng . Chọn C.
Ví dụ 7: Một bể nước có dung tích 1000 lít. Người ta mở vòi cho nước chảy vào bể, ban đầu bể cạn nước. Trong giờ đầu vận tốc nước chảy vào bể là 1 lít/1 phút. Trong các giờ tiếp theo vận tốc nước chảy giờ sau gấp đôi giờ liền trước. Hỏi sau khoảng thời gian bao lâu thì bể đầy nước (kết quả gần đúng nhất)
A. 3,14 giờ	B. 4,64 giờ	C. 4,14 giờ	D. 3,64 giờ
Lời giải
Gọi là khoảng thời gian cần để nước chảy đầy bể, ta có
 giờ. Chọn C.
Ví dụ 8: Cho biết chu kì bán rã của chất phóng xạ radi là 1602 năm (tức là một lượng sau 1602 năm phân hủy thì chỉ còn lại một nửa). Sự phân hủy được tính theo công thức trong đó là lượng chất phóng xạ ban đầu, là tỉ lệ phân hủy hàng năm , là thờ gian phân hủy, là lượng còn lại sau thời gian phân hủy. Hỏi sau 4000 năm phân hủy sẽ còn lại bao nhiêu gam (làm tròn đến 3 chữ số thập phân)?
A. 0,886 (gam)	B. 1,023 (gam)	C. 0,795 (gam)	D. 0,923 (gam)
Lời giải
Đầu tiên ta sẽ tính 
Thay (gam), vào công thức , tìm được (gam). Chọn A.
Ví dụ 9: Với mức tiêu thụ thức ăn của trang trại X không đổi như dự định thì lượng thức ăn dự trữ đủ cho 100 ngày. Nhưng thực tế, kể từ ngày thứ hai trở đi lượng tiêu thụ thức ăn của trang trại tăng thêm 4% so với ngày trước đó. Hỏi lượng thức ăn dự trữ của trang trại X thực tế chỉ đủ cho bao nhiêu ngày?
A. 42 ngày	B. 41 ngày	C. 39 ngày	D. 40 ngày
Lời giải
Gọi là lượng thức ăn tiêu thụ trong một ngày theo dự định, suy ra số thức ăn có là 
Ngày thứ 2 lượng tiêu thụ thức ăn là . Ngày thứ là 
Khi đó ta có với là số ngày thực tế tiêu thụ hết lương thực.
Suy ra ngày. Chọn B.
Ví dụ 10: Áp suất không khí (đo bằng milimet thủy ngân, kí hiệu mmHg) theo công thức (mmHg), trong đó là độ cao (đo bằng mét), (mmHg) là áp suất không khí ở mức nước biển , là hệ số suy giảm. Biết rằng ở độ cao 1000 m thì áp suất không khí là 672,71 (mmHg). Tính áp suất của không khí ở độ cao 3000 m.
A. 527,06 (mmHg)	B. 530,23 (mmHg)	C. 530,73 (mmHg)	D. 545,01 (mmHg)
Lời giải
Ở độ cao 1000 m ta có: 
Áp suất không khí ở độ cao 3000 m là:
 (mmHg). Chọn A.
Ví dụ 11: Một vi sinh đặc biệt có cách sinh sản vô tính kì lạ. Tại thời điểm có đúng 2 con , với mỗi con , sống được tới giờ thứ (với là số nguyên dương) thì ngay lập tức tại thời điểm đó nó đẻ một lần ra con khác. Tuy nhiên do chu kì của con ngắn nên ngay sau khi đẻ xong lần thứ 4 nó lập tức chết. Hỏi lúc phút có bao nhiêu con sinh vật đang sống?
A. 4992	B. 3712	C. 19264	D. 5008
Lời giải
Gọi là số sinh vật được sinh ra ở giờ thứ ta có: 
Khi đó số sinh vật đang sống ở giờ thứ 6 là: con. Chọn A.
BÀI TẬP TỰ LUYỆN
Câu 1: Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.424.000 đồng	B. 102.423.000 đồng
C. 102.016.000 đồng	D. 102.017.000 đồng
Câu 2: Một người gửi tiết kiệm hết 10 triệu đồng vào một ngân hàng với lãi suất 7% một năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A. 14,026 triệu đồng	B. 50,7 triệu đồng	C. 4,026 triệu đồng	D. 3,5 triệu đồng
Câu 3: Một người gửi tiết kiệm vào ngân hàng với lãi suất 8,4%/năm và tiền lãi hàng năm được nhập vào tiền vốn. Tính số năm tối thiểu người đó cần gửi để số tiền thu được nhiều hơn 2 lần số tiền gửi ban đầu.
A. 10 năm	B. 9 năm	C. 8 năm	D. 11 năm
Câu 4: Một người gửi ngân hàng 100 triệu đồng với kì hạn 3 tháng, lãi suất 5% một quý theo hình thức lãi kép (sau 3 tháng sẽ tính lãi và cộng vào gốc). Sau đúng 6 tháng, người đó gửi thêm 50 triệu đồng với kì hạn và lãi suất như trước đó. Tính tổng số tiền người đó nhận được sau 1 năm (tính từ lần gửi đầu tiên)?
A. 179,676 triệu đồng	B. 177,676 triệu đồng
C. 178,676 triệu đồng	D. 176,676 triệu đồng
Câu 5: Để thực hiện kế hoạch kinh doanh, ông A cần chuẩn bị một số vốn ngay từ bây giờ. Ông có số tiền là 500 triệu đồng gửi tiết kiệm với lãi suất 0,4%/tháng theo hình thức lãi kép. Sau 10 tháng, ông A gửi thêm vào 300 triệu nhưng lãi suất các tháng sau có thay đổi là 0,5%/tháng. Hỏi sau 2 năm kể từ lúc gửi số tiền ban đầu, số tiền ông A nhận được cả gốc lẫn lãi là bao nhiêu? (Không tính phần thập phân).
A. 879693600	B. 880438640	C. 879693510	D. 901727821
Câu 6: Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6,1%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền?
A. 13 năm	B. 10 năm	C. 11 năm	D. 12 năm
Câu 7: Ông gửi tiết kiệm 200 triệu đồng vào ngân hàng với hình thức lãi kép và lãi suất 7,2% một năm. Hỏi sau 5 năm ông thu về số tiền (cả vốn lẫn lãi) gần nhất với số nào sau đây?
A. 283.145.000 đồng	B. 283.155.000 đồng
C. 283.142.000 đồng	D. 283.151.000 đồng
Câu 8: Dân số thế giới được dự đoán theo công thức , trong đó là các hằng số, là năm tính dân số. Theo số liệu thực tế, dân số thế giới năm 1950 là 2560 triệu người; dân số thế giới năm 1980 là 3040 triệu người. Hãy dự đoán dân số thế giới năm 2020?
A. 3823 triệu	B. 5360 triệu	C. 3954 triệu	D. 4017 triệu
Câu 9: Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau đúng 5 năm người đó mới rút lãi thì số tiền lãi người đó nhận được gần nhất với số tiền nào dưới đây? Nếu trong khoảng thời gian này người này không rút tiền và lãi suất không thay đổi.
A. 20,128 triệu đồng	B. 17,5 triệu đồng	C. 70,128 triệu đồng	D. 67,5 triệu đồng
Câu 10: Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 8,4%/năm. Cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho năm tiếp theo. Người đó sẽ lĩnh được số tiền cả vốn lẫn lãi là 80 triệu đồng sau năm. Hỏi nếu trong khoảng thời gian này người đó không rút tiền và lãi suất không thay đổi thì gần nhất với đô nào dưới đây.
A. 5	B. 6	C. 5	D. 7
Câu 11: Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép, lãi suất một tháng (kể từ tháng thứ 2, tiền lãi được tính theo phần trăm tổng tiền có được của tháng trước đó với tiền lãi của tháng trước đó). Sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu.
A. 45 tháng	B. 46 tháng	C. 47 tháng	D. 44 tháng
Câu 12: Một người gửi tiết kiệm với số tiền gửi là A đồng với lãi suất 6% một năm, biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính gốc cho năm tiếp theo. Sau 10 năm người đó rút ra được số tiền gốc lẫn lãi nhiều hơn số tiền ban đầu là 100 triệu đồng? Hỏi người đó phải gửi số tiền A bằng bao nhiêu?
A. 145037058,3 đồng	B. 55839477,69 đồng
C. 126446589 đồng	D. 111321563,5 đồng
Câu 13: Ông A gửi 15 triệu đồng vào ngân hàng theo thể thức lãi kép kỳ hạn 1 năm với lãi suất 7,65%/năm. Giả sử lãi suất không thay đổi. Hỏi sau 5 năm, ông A thu được cả vốn lẫn lãi là bao nhiêu triệu đồng?
A. triệu đồng	B. triệu đồng
C. triệu đồng	D. triệu đồng
Câu 14: Một người gửi 6 triệu đồng vào ngân hàng theo thể thức lãi kép kỳ hạn 1 năm với lãi suất 7,56%/năm. Hỏi sau bao nhiêu năm, người gửi sẽ có ít nhất 12 triệu đồng từ số tiền gửi ban đầu (giả sử lãi suất không thay đổi).
A. 5 năm	B. 10 năm	C. 12 năm	D. 8 năm
Câu 15: Bác Bình cần sửa lại căn nhà với chi phí 1 tỷ đồng. Đặt kế hoạch sau 5 năm phải có đủ số tiền trên thì mỗi năm bác Bình cần gửi vào ngân hàng một khoản tiền tiết kiệm như nhau gần nhất bằng giá trị nào sau đây, biết lãi suất của ngân hàng là 7%/năm và lãi hàng năm được nhập vào vốn.
A. 162 triệu đồng	B. 162,5 triệu đồng
C. 162,2 triệu đồng	D. 162,3 triệu đồng
Câu 16: Biết rằng khi đỗ vào trường đại học , mỗi sinh viên cần nộp một khoản tiền lúc nhập học là 5 triệu đồng. Bố mẹ Minh tiết kiệm để đầu mỗi tháng gửi một số tiền như nhau vào ngân hàng theo hình thức lãi kép. Hỏi mỗi tháng, họ phải gửi số tiền là bao nhiêu (làm tròn đến hàng nghìn) để sau 9 tháng, rút cả gốc lẫn lãi thì được 5 triệu đồng, biết lãi suất hiện tại là 0,5%/tháng.
A. 542.000 đồng	B. 555.000 đồng	C. 556.000 đồng	D. 541.000 đồng
Câu 17: Một người gửi tiết kiệm theo thể thức lãi kép như sau: Mỗi tháng, người này tiết kiệm một số tiền là đồng rồi gửi vào ngân hàng theo kỳ hạn 1 tháng với lãi suất 0,8%/tháng. Tìm để sau 3 năm kể từ ngày gửi lần đầu tiên người đó có tổng số tiền là 500 triệu đồng.
A. 	B. 
C. 	D. 
Câu 18: Anh Phúc đầu tư 100 triệu đồng vào một công ty theo mức lãi kép với lãi sấut 15% một năm. Giả sử lãi suất hàng năm không thay đổi. Hỏi sau 3 năm, số tiền lãi của anh Phúc gần nhất với giá trị nào sau đây?
A. 104,6 triệu đồng	B. 52,1 triệu đồng
C. 152,1 triệu đồng	D. 4,6 triệu đồng
Câu 19: Một người có 10 triệu đồng gửi vào ngân hàng với kỳ hạn 3 tháng (1 quý là 3 tháng), lãi suất 6%/1 quý theo hình thức lãi kép (sau 3 tháng sẽ tính lãi và cộng vào gốc). Sau đúng 3 tháng, người đó lại gửi thêm 20 triệu đồng với hình thức và lãi suất như vậy. Hỏi sau 1 năm, tính từ lần gửi đầu tiên, người đó nhận được số tiền gần kết quả nào nhất?
A. 35 triệu	B. 37 triệu	C. 36 triệu	D. 38 triệu
Câu 20: Một người gửi tiết kiệm 50 triệu đồng vào một ngân hàng với lãi suất 7% một năm. Biết rằng, nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi được nhập vào vốn ban đầu. Nếu sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là:
A. 20,128 triệu đồng	B. 70,128 triệu đồng
C. 3,5 triệu đồng	D. 50,7 triệu đồng
Câu 21: Ông A mong muốn sở hữu khoản tiền 200.000.000 đồng vào ngày 2/3/2012 ở một tài khoản lãi suất năm là 6,05%. Hỏi ông A cần đầu tư bao nhiêu tiền trên tài khoản này vào ngày 2/3/2007 để đạt được mục tiêu đề ra?
A. 14.909.9652,5 đồng	B. 14.909.9652,6 đồng
C. 14.909.9552,5 đồng	D. 14.909.8652,5 đồng
Câu 22: Ông A gửi 9,8 triệu đồng tiết kiệm với lãi suất 8,4%/năm và lãi suất hằng năm được nhập vào vốn. hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (biết rằng lãi suất không thay đổi).
A. 9 năm	B. 8 năm	C. 7 năm	D. 10 năm
Câu 23: Ông A gửi tiết kiệm với lãi suất 8,4%/năm và lãi suất hằng năm được nhập vào vốn. Hỏi sau bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?
A. 9 năm	B. 8 năm	C. 7 năm	D. 10 năm
Câu 24: Anh A mua nhà trị giá 300 triệu đồng theo phương thức trả góp. Nếu cuối mỗi tháng, bắt đầu từ tháng thứ nhất anh A trả 5.500.000 đồng và chịu lãi suất số tiền chưa trả là 0,5%/tháng thì sau bao nhiêu tháng anh A trả hết số tiền trên.
A. 	B. 	C. 	D. 
Câu 25: Bà A gửi 100 triệu đồng vào tài khoản định kỳ tính lãi kép với lãi suất là 8%/năm. Sau 5 năm, bà rút toàn bộ và dùng một nửa để sửa nhà, số tiền còn lại bà tiếp tục đem gửi ngân hàng trong 5 năm với cùng lãi suất. Tính số tiền lãi thu được sau 10 năm.
A. 81,412 triệu đồng	B. 115,892 triệu đồng
C. 119 triệu đồng	D. 78 triệu đồng
Câu 26: Một lon nước soda được đưa vào một máy làm lạnh chứa đá tại . Nhiệt độ của soda ở phút thứ được tính theo định luật Newton bởi công thức . Phải làm mát soda trong bao lâu để nhiệt độ là ?
A. phút	B. phút	C. phút	D. 

Tài liệu đính kèm:

  • docde_on_tap_mon_toan_lop_12_chu_de_9_bai_tap_lai_suat_tang_tru.doc