Giáo án Hình học Lớp 12 - Chương I, Bài 3: Khái niệm về thể tích khối đa diện

Giáo án Hình học Lớp 12 - Chương I, Bài 3: Khái niệm về thể tích khối đa diện

Chủ đề 1. KHÁI NIỆM VỀ THỂ TÍCH KHỐI ĐA DIỆN

Thời lượng dự kiến: 5 tiết

I. MỤC TIÊU

1. Kiến thức

- Biết khái niệm về thể tích khối đa diện.

- Biết công thức tính thể tích các khối lăng trụ và khối chóp.

2. Kĩ năng

- Tính được thể tích khối lăng trụ và khối chóp.

- Vận dụng việc tính thể tích để giải quyết một số bài toán thực tế.

3.Về tư duy, thái độ

- Rèn luyện tư duy logic, thái độ chủ động, tích cực trong học tập .

- Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ về quen, có tinh thần hợp tác xây dựng cao.

4. Định hướng các năng lực có thể hình thành và phát triển: Năng lực tự học, năng lực giải quyết vấn đề, năng lực tự quản lý, năng lực giao tiếp, năng lực hợp tác, năng lực sử dụng ngôn ngữ.

II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH

1. Giáo viên: Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu.

2. Học sinh

+ Đọc trước bài

+ Sách giáo khoa, bảng phụ, dụng cụ học tập.

 

doc 8 trang Trịnh Thu Huyền 4071
Bạn đang xem tài liệu "Giáo án Hình học Lớp 12 - Chương I, Bài 3: Khái niệm về thể tích khối đa diện", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chủ đề 1. KHÁI NIỆM VỀ THỂ TÍCH KHỐI ĐA DIỆN
Thời lượng dự kiến: 5 tiết
I. MỤC TIÊU
1. Kiến thức
- Biết khái niệm về thể tích khối đa diện.
- Biết công thức tính thể tích các khối lăng trụ và khối chóp.
2. Kĩ năng
- Tính được thể tích khối lăng trụ và khối chóp.
- Vận dụng việc tính thể tích để giải quyết một số bài toán thực tế.
3.Về tư duy, thái độ	
- Rèn luyện tư duy logic, thái độ chủ động, tích cực trong học tập .
- Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ về quen, có tinh thần hợp tác xây dựng cao.
4. Định hướng các năng lực có thể hình thành và phát triển: Năng lực tự học, năng lực giải quyết vấn đề, năng lực tự quản lý, năng lực giao tiếp, năng lực hợp tác, năng lực sử dụng ngôn ngữ. 
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
1. Giáo viên: Giáo án, phiếu học tập, phấn, thước kẻ, máy chiếu.
2. Học sinh
+ Đọc trước bài
+ Sách giáo khoa, bảng phụ, dụng cụ học tập.
III. TIẾN TRÌNH DẠY HỌC
HOẠT ĐỘNG KHỞI ĐỘNG
A
Mục tiêu: Tạo tâm thế học tập cho học sinh, giúp các em ý thức được nhiệm vụ học tập, sự cần thiết phải tìm hiểu về các vấn đề đã nêu ra từ đó gây được hứng thú với việc học bài mới. 
Nội dung, phương thức tổ chức hoạt động học tập của học sinh
Dự kiến sản phẩm, đánh giá kết quả hoạt động
Hãy quan sát các hình sau và trả lời các câu hỏi.
Câu 1: Khối Rubik (H1) có các ô vuông tô màu kích thước 1cm. Hỏi thể tích của khối Rubik bằng bao nhiêu?
Câu 2: Cần bao nhiêu khối đất, đá để đắp được khối kim tự tháp là hình chóp tứ giác đều có độ dài cạnh đáy là 230m , chiều cao là 147m ( H2).
Câu 3: Có thể xếp hết hay không các vali ở hình 3vào của khoang hành lý ôtô ở hình 4? 
Hình 1
Hình 2
Hình 3
Hình 4
Như vậy, thể tích của một khối đa diện được tính như thế nào?
Phương thức tổ chức: Hoạt động cá nhân – tại lớp
Học sinh quan sát hình vẽ, đọc các câu hỏi nhưng chưa trả lời được các câu hỏi.
HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC
B
Mục tiêu: Hình thành khái niệm về thể tích khối đa diện, biết được công thức và tính được thể tích của khối lăng trụ và khối chóp.
Nội dung, phương thức tổ chức hoạt động học tập của học sinh
Dự kiến sản phẩm, đánh giá kết quả hoạt động
1.Khái niệm về thể tích khối đa diện. 
 Thể tích của một khối đa diện hiểu theo nghĩa thông thường là số đo độ lớn phần không gian mà nó chiếm chỗ (Bao gồm phần không gian bên trong và hình đa diện).
 Định nghĩa:
Mỗi khối đa diện (H) có một thể tích là một số duy nhất V(H) thoả mãn các tính chất sau:
i) V(H) là một số dương;
ii) Nếu (H) là khối lập phương có cạnh bằng 1 thì V(H) =1.
iii) Nếu hai khối đa diện (H) và (H’) bằng nhau thì V(H) = V(H’) 
iv) Nếu khối đa diện (H) được phân chia thành hai khối đa diện (H1) và (H2) thì:
V(H)=V(H1 )+ V(H2).
Ví dụ 1: Cho khối lập phương có cạnh bằng (có thể tích). Các khối đa diện được ghép từ các khối lập phương có cạnh bằng (hình vẽ). 
i) So sánh thể tích hai khối lập phương (hình vẽ).
So sánh thể tích hai khối lăng trụ đối xứng nhau qua một mặt phẳng (hình vẽ).
ii) Tính thể tích của khối đa diện (hình vẽ). 
Chú ý:
Số dương V(H) nói trên cũng được gọi là thế tích của hình đa diện giới hạn khối da diện (H).
Khối lập phương có cạnh bằng 1 được gọi là khối lập phương đơn vị.
Thể tích của khối hộp chữ nhật bằng tích ba kích thước.
Phương thức tổ chức: Hoạt động cá nhân – tại lớp thông qua hướng dẫn của giáo viên.
Hiểu được thế nào là thể tích của một khối đa diện.
Kết quả VD1:
i) Hai khối lập phương có cạnh bằng 3 (bằng nhau) nên thể tích bằng nhau.
 Hai khối lăng trụ bằng nhau thì có thể tích bằng nhau
ii) Khối đa diện đã cho được chia thành hai khối hình hộp chữ nhật có kích thước lần lượt:
Khối 1: 3x3x1. Khối 1 có thể tích: 
Khối 2: 3x3x2, có thể tích: 
Thông qua VD1, học sinh củng cố lại khái niệm bề thể tích khối đa diện
Học sinh nắm được nội dung của chú ý.
2. Thể tích khối lăng trụ:
 Nếu xem khối hộp chữ nhật là khối lăng trụ có đáy là hình chữ nhật và chiều cao thì từ chú ý trên suy ra thể tích của nó bằng diện tích đáy nhân với chiều cao.
Ta có thể chứng minh được điều đó cũng đúng với khối lăng trụ bất kỳ.
Định lí:
Thể tích của một khối lăng trụ có diện tích đáy và chiều cao là:
Ví dụ 2: Cho hình lăng trụ có diện tích đáy là và chiều cao thì thể tích bằng bao nhiêu?
Ví dụ 3: Cho hình lăng trụ đứng tam giác có đáy là tam giác vuông tại , . Tính thể tích của khối lăng trụ.
Phương thức tổ chức: 
- Vấn đáp
- Hoạt động cá nhân – tại lớp 
Từ đây rút ra được công thức tính thể tích khối lăng trụ bất kỳ thông qua khối lăng trụ cụ thể là khối hộp chữ nhật.
Học sinh nắm được công thức tính thể tích của khối lăng trụ và áp dụng làm bài tập.
Kết quả VD2:
Kết quả VD3:
2. Thể tích khối chóp:
Như đã biết, chúng ta đã chia được một khối lăng trụ tam giác thành 3 khối chóp có đáy là tam giác. Vậy liệu chăng thể tích của 3 khối chóp có bằng nhau? Và công thức để tính thể tích của khối chóp là gì?
Định lí:
Thể tích của một khối chóp có diện tích đáy và chiều cao là: 
Ví dụ 4: Cho hình chóp tam giác có đáy là tam giác đều cạnh , chiều cao hạ từ đỉnh đến mặt phẳng bằng . Thể tích của khối chóp bằng bao nhiêu?
Phương thức tổ chức: 
- Vấn đáp
- Hoạt động theo cặp – tại lớp
Ta có thể chia một khối lăng trụ tam giác thành 3 khối chóp tam giác có thể tích bằng nhau. Như vậy thể tích của mỗi khối chóp bằng thể tích khối lăng trụ ban đầu.
Nắm được công thức tính thể tích khối chóp và áp dụng làm bài tập
Kết quả VD4:
Diện tích tam giác 
Thể tích khối chóp
HOẠT ĐỘNG LUYỆN TẬP
C
Mục tiêu:Thực hiện được cơ bản các dạng bài tập trong SGK, củng cố lại các công thức tính thể tích của khối đa diện.
Nội dung, phương thức tổ chức hoạt động học tập của học sinh
Dự kiến sản phẩm, đánh giá kết quả hoạt động
Câu 1: 
a) Tính thể tích của khối chóp tứ giác đều có cạnh đáy và chiều cao đều bằng .
b) Tính thể tích khối tứ diện đều cạnh a.
c) Tính thể tích khối bát điện đều cạnh a.
Phương thức tổ chức: Hoạt động cá nhân – tại lớp
a) 
b) 
c) 
Câu 2: 
a) Cho hình hộp ABCD.A'B'C'D'. Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện ACB'D'.
b) Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A', B', C' khác S.
Chứng minh rằng 
Phương thức tổ chức: Hoạt động nhóm – tại lớp
a) 
b) Tính diện tích tam giác theo hai cạnh và góc xen giữa
Câu 3: Cho hình lăng trụ tam giác. Gọi và lần lượt lừ trung điểm của các cạnh và. Đường thẳng cắt đường thẳng tại. Đường thẳng cắt đường thẳng tại. Gọi là thể tích khối lăng trụ.
a) Tính thể tích khối chóp theo .
b) Gọi khối đa diện là phần còn lại của khối lăng trụ sau khi cắt bỏ đi khối chóp. Tính tỉ số thể tích của và của khối chóp . 
Phương thức tổ chức: Hoạt động nhóm – tại lớp
a) Hình chóp C. A'B'C' và hình lăng trụ ABC.A'B'C' có đáy và đường cao bằng nhau nên Từ đó suy ra 
Do EF là đường trung bình của hình bình hành ABB'A' nên diện tích ABFE bằng nửa diện tích ABB'A'. Do đó 
b) Áp dựng câu a) ta có 
Vì EA' song song và bằng CC' nên theo định lí Ta-let, A’ là trung điểm của E'C. Tương tự, B' là trung điểm của F'C. Do dó diện tích tam giác C'E'F' gấp bốn lần diện tích tam giác A'B'C. 
Từ đó suy ra Do đó 
HOẠT ĐỘNG VẬN DỤNG, TÌM TÒI MỞ RỘNG
D,E
Mục tiêu: Giải quyết một số vấn đề cụ thể trong thực tiễn đã đặt ra ở phần khởi động, giúp học sinh thấy được ứng dụng của việc tính thể tích, của toán học vào cuộc sống, học sinh thấy được sự cần thiết phải học môn toán, từ đó hình thành lòng say mê, ham học bộ môn toán.
Nội dung, phương thức tổ chức hoạt động học tập của học sinh
Dự kiến sản phẩm, đánh giá kết quả hoạt động
Cần khoảng bao nhiêu khối đất, đá để đắp được khối kim tự tháp là hình chóp tứ giác đều có độ dài cạnh đáy là 230m , chiều cao là 147m.
Phương thức tổ chức: Hoạt động nhóm – tại lớp
Thể tích của khối kim tự tháp là
Vậy cần khoảng khối đất, đá để đắp được khối kim tự tháp đã cho.
Một bậc tam cấp được xếp từ các khối đá hình lập phương có cạnh bằng bằng như hình vẽ. Hãy tính thể tích của khối tam cấp?
Phương thức tổ chức: Hoạt động nhóm – tại lớp
Câu 3) Hai khối đa diện có thể tích bằng nhau thì có bằng nhau hay không? Nếu không thì em hãy cho ví dụ.
Phương thức tổ chức: Hoạt động nhóm – tại nhà
- Hai khối đa diện có thể tích bằng nhau thì chưa chắc bằng nhau. 
- Học sinh lấy được ví dụ minh họa cho điều này
Câu 4) Có thể xếp hết hay không các vali ở hình 3vào của khoang hành lý ôtô ở hình 4? 
Hình 3
Hình 4
Phương thức tổ chức: Hoạt động nhóm – tại nhà
- Điều này còn tùy thuộc vào tổng thể tích của các chiếc vali và thể tích của khoang hành lỹ ôtô.
- Học sinh gải thích cụ thể khi nào xếp hết, khi nào không.
IV. CÂU HỎI/BÀI TẬP KIỂM TRA, ĐÁNH GIÁ CHỦ ĐỀ THEO ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC
NHẬN BIẾT
1
Cho khối chóp có diện tích đáy bằng S; chiều cao bằng h và thể tích bằng V. Trong các đẳng thức dưới đây, hãy tìm đẳng thức đúng
A. 	B. 	C. 	D. 
Câu 2. Cho khối lăng trụ có diện tích đáy bằng B, chiều cao bằng h. Thể tích bằng V của khối lăng trụ bằng 
A. B. 	C. 	D. 
THÔNG HIỂU
2
Câu 3. Cho hình chóp có tam giác vuông tại , , , cạnh bên vuông góc với mặt phẳng đáy và . Thể tích của khối chóp bằng
A. 	B. 	C. 	D. 
Câu 4. Cho hình chóp có tam giác vuông tại , , , cạnh bên vuông góc với mặt phẳng đáy, góc giữa với mặt phẳng đáy bằng . Thể tích của khối chóp bằng
A. 	B. 	C. 	D. 
Câu 5. Cho hình chóp có đáy là hình vuông cạnh , cạnh bên SA vuông góc với mặt phẳng đáy, . Thể tích khối chóp bằng
A. 	B. 	C. 	D. 
Câu 6. Cho hình chóp có , đáy là hình thang vuông tại và thỏa mãn . Tính thể tích khối chóp bằng
A. 	B. 	C. 	D. 
Câu 7. Cho hình lăng trụ đứng có đáy là tam giác đều cạnh , Thể tích khối lăng trụ bằng
A. 	B. 	C. 	D. 
Câu 8. Cho hình lăng trụ đứng có đáy là tam giác đều cạnh và Thể tích khối lăng trụ bằng
A. 	B. 	C. 	D. 
Câu 9. Khối hộp chữ nhật có , , thì thể tích bằng
A. 8	B. 10	C. 12	D. 24
VẬN DỤNG
3
Câu 10. Cho hình chóp có đáy là tam giác vuông tại ; đỉnh cách đều các điểm Biết ; góc giữa đường thẳng và mặt đáy bằng . Tính theo thể tích của khối chóp .
	A. . 	B. . 	C. . 	D. . 
Câu 11. Cho tứ diện có các cạnh và đôi một vuông góc. Các điểm lần lượt là trung điểm các đoạn thẳng Biết rằng , , . Tính thể tích của khối tứ diện . 
	A. 	B. 	C. 	D. 
Câu 12. Cho tứ diện có thể tích . Gọi là thể tích của khối tứ diện có các đỉnh là trọng tâm của các mặt của khối tứ diện Tính tỉ số 
	A. 	B. 	C. 	D. 
Câu 13. Cho hình chóp có chiều cao bằng , diện tích đáy bằng . Gọi là trung điểm của cạnh và thuộc cạnh sao cho Tính thể tích của khối chóp . 
	A. 	B. 	C. 	D. 
Câu 14. Cho khối chóp có thể tích bằng Gọi lần lượt là trung điểm các cạnh Tính thể tích của khối tứ diện 
	A. 	 	B. 	 	C. 	D. 	
Câu 15. Gọi là thể tích của hình lập phương , là thể tích tứ diện . Hệ thức nào sau đây đúng? 
	A. 	B. 	C. 	D. 
Câu 16. Cho lăng trụ đứng . Gọi là trung điểm . Tính tỉ số của thể tích khối tứ diện và thể tích khối lăng trụ đã cho.
	A. . 	B. . 	C. .	D. .
VẬN DỤNG CAO
4
Câu 17. Một người cần làm một hình lăng trụ tam giác đều từ tấm nhựa phẳng để có thể tích là . Để ít hao tốn vật liệu nhất thì cần tính độ dài các cạnh của khối lăng trụ tam giác đều này bằng bao nhiêu?
	A. Cạnh đáy bằng và cạnh bên bằng 
	B. Cạnh đáy bằng và cạnh bên bằng 
	C. Cạnh đáy bằng và cạnh bên bằng 
	D. Cạnh đáy bằng và cạnh bên bằng 
Câu 18. Cho một tấm nhôm hình chữ nhật có kích thước . Người ta cắt ở bốn góc của tâm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng , rồi gập tấm nhôm lại thì được một cái thùng không nắp dạng hình hộp. Tính thể tích lớn nhất của hộp tạo thành.
	A. 	B. 
	C. 	D. 
Câu 19. Cho một tấm bìa hình chữ nhật có kích thước . Người ta cắt 6 hình vuông bằng nhau như hình vẽ, mỗi hình vuông cạnh bằng , rồi gập tấm bìa lại để được một hộp có nắp. Tìm để hộp nhận được có thể tích lớn nhất.
	A. 	B. 	C. 	D. 
Câu 20. Một hộp không nắp được làm từ một mảnh các tông theo hình vẽ. Hộp có đáy là một hình vuông cạnh , chiều cao là và thể tích là Tìm độ dài cạnh hình vuông sao cho chiếc hộp làm ra tốn ít bìa các tông nhất.
 	A. 	B. 
	C. 	D. 
V. PHỤ LỤC
PHIẾU HỌC TẬP
1
PHIẾU HỌC TẬP SỐ 1
PHIẾU HỌC TẬP SỐ 2
MÔ TẢ CÁC MỨC ĐỘ
2
Nội dung
Nhận thức
Thông hiểu
Vận dụng
Vận dụng cao

Tài liệu đính kèm:

  • docgiao_an_giai_tich_lop_12_chuong_i_bai_3_khai_niem_ve_the_tic.doc